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Incisional hernia is the most common complication of laparotomy 
that requires reoperation. Recent figures cite an overall incidence of 

nearly 10% (1). Considering that two million laparotomies are per-
formed annually in the United States (2), there will be an estimated 
200,000 patients requiring incisional hernia repair each year (3). For 
stoma site hernias, the incidence of hernia formation may be as high as 
30% and, when surgical site infections occur, the incidence is believed 
to double (4,5). The costs of incisional hernia repair surgeries are stag-
gering. Poulose et al (6) calculated an average cost of USD$15,899 for 
each in-patient operation in the United States in 2006, which 
amounts to an estimated $3.2 billion per year. Bower and Roth(7) 
were quick to point out that this is likely an underestimation of total 
costs, because the study by Poulose et al (6) did not account for physi-
cian fees and societal costs, such as absence from work, and excluded 
Veterans Affairs (VA) system costs. 

Nonincisional hernias share many aspects of their pathophysiology 
and management with incisional hernias. Collectively, the repair of 
nonincisional abdominal wall hernias form the most common group of 
major operations performed by general surgeons, with more than one 
million procedures annually in the United States (8). These hernias 
demonstrate a prevalence of 1.7% in the general population, rising up 
to 4% in individuals >45 years of age. Inguinal hernia, which accounts 
for 75% of these occurrences, holds a lifetime risk of 27% in men (9).

Prosthetic meshes are widely applied to reduce hernia recurrence 
rates. The 10-year incisional hernia recurrence rate is reported to be 
63% for traditional suture repair without mesh and 32% for repairs 
using prosthetic mesh (10). While meshes are obviously beneficial, 
they remain associated with several serious complications including 
hernia recurrence, infection (11), chronic pain (12) and adhesions 

(13). As such, many hurdles remain to be overcome with new hernia 
mesh designs. The present article reviews the different classes of hernia 
meshes and principles of tissue engineering as applied to mesh develop-
ment, and explains how current complications associated with surgical 
mesh are being addressed with different mesh designs.

Ventral Incisional Hernia
During closure of a laparotomy, the linea alba is reapproximated and 
the rectus muscles are returned to midline. The integrity of the repair 
is dependent on suture fixation until the load-bearing properties of the 
scar become equal to or surpass that of the suture. The fundamental 
pathophysiology of ventral incisional hernia is lateral migration of 
the rectus muscle with loss of function commonly referred to as ‘loss 
of domain’ (14). Mesh has become standard for repair of incisional 
hernias because it mitigates loss of domain and helps maintain the 
rectus muscles in the midline where they function best. The impact 
of mesh was clearly demonstrated in a multicentre randomized study 
published in the New England Journal of Medicine (15). Luijendijk et al 
(15) reported that patients undergoing standard suture repair experi-
enced a recurrence rate of nearly double that of patients with mesh 
repair. Similarly, in a recent meta-analysis published in the Journal of 
the American Medical Association, Surgery, patients undergoing suture 
repair experienced a nearly threefold increase in hernia recurrence 
rates when compared with patients who underwent mesh repair (16). 
As such, the current recommendations set forth by the Ventral Hernia 
Working Group include the use of mesh to reinforce all ventral hernia 
repairs (17). Further recommendations include centralization and 
reapproximation of the paired rectus muscles. In selected instances, 
when the rectus muscles are splayed apart and cannot easily come 
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Surgical mesh has become an indispensable tool in hernia repair to 
improve outcomes and reduce costs; however, efforts are constantly being 
undertaken in mesh development to overcome postoperative complica-
tions. Common complications include infection, pain, adhesions, mesh 
extrusion and hernia recurrence. Reducing the complications of mesh 
implantation is of utmost importance given that hernias occur in hundreds 
of thousands of patients per year in the United States. In the present 
review, the authors present the different types of hernia meshes, discuss the 
key properties of mesh design, and demonstrate how each design element 
affects performance and complications. The present article will provide a 
basis for surgeons to understand which mesh to choose for patient care and 
why, and will explain the important technological aspects that will con-
tinue to evolve over the ensuing years.
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Le treillis chirurgical pour réparer l’incision des 
hernies ventrales : comprendre la conception du 
treillis

Le treillis chirurgical est devenu indispensable pour réparer les hernies, 
car il améliore les résultats et réduit les coûts. Cependant, les treillis 
sont en constant développement afin de vaincre les complications 
postopératoires. Parmi les complications courantes, soulignons 
l’infection, la douleur, les adhérences, l’extrusion du treillis et la récur-
rence des hernies. Il est essentiel de réduire les complications liées à 
l’implantation des treillis, car des centaines de milliers de patients 
souffrent de hernies chaque année aux États-Unis. Dans la présente 
analyse, les auteurs présentent les divers types de treillis pour hernie, 
en exposent les principales propriétés et démontrent l’effet de chaque 
élément de conception sur le rendement et les complications. Le 
présent article aidera les chirurgiens à choisir le treillis pour leurs 
patients et exposera les aspects technologiques importants qui con-
tinueront d’évoluer au cours des prochaines années.
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together in the midline, a components separation may be helpful. 
Components separation is the partial release of the abdominal wall 
fascia that connects the oblique muscles with the rectus muscles (18). 
In patients in whom the rectus muscles still cannot be brought to the 
midline, a bridged mesh repair is required. Bridged mesh repairs have 
demonstrated higher recurrence and complication rates compared 
with nonbridged repairs and, are therefore, suboptimal, particularly 
with biologic mesh (19,20). Outcomes are significantly improved 
with a mesh reinforced repair, in which the fascial edges are closed 
completely over the mesh. 

The abdominal wall is exposed to multiple forces that contribute to 
hernia formation (Figure 1). These forces result from contraction of 
the internal oblique, external oblique and transverse abdominis 
muscle groups, as well as increased intra-abdominal pressure. The rec-
tus muscles are the only muscle group of the anterior abdominal wall 
that contracts in a cephalad-caudal direction, which probably does not 
contribute to hernia recurrence.

Classes of Mesh
For the purpose of simplification and uniformity in the present review, 
all materials used to support hernia repairs are referred to as ‘mesh’. 
Meshes can be divided into two broad classes: synthetic and biologic. 
Synthetic meshes are either nondegradable or degradable, while bio-
logic meshes are all degradable. For the purposes of the present review, 
the term ‘degradable’ is used  for meshes that, at least in part, dissolve 
or remodel over time and are replaced by either scar tissue or regenera-
tive matrix. The different classes of surgical mesh along with their 
relative advantages and disadvantages are listed in Table 1.

The synthetic nondegradable meshes, sometimes referred to as 
‘classical’ or ‘traditional’ meshes, are generally the least expensive. The 
earlier materials used for these meshes – perlon and nylon – were later 
abandoned because perlon caused intense inflammatory responses and 
nylon was shown to degrade in the long-term (21). Currently, nearly 
all synthetic nondegradable meshes are made from one of three basic 

materials: polypropylene, polyethylene terephthalate polyester or 
expanded polytetrafluoroethylene (ePTFE) (22). The characteristics 
of the different types of synthetic nondegradable mesh are presented 
in Table 2.

Synthetic degradable materials were intended to reduce adhesions 
and provide a safe alternative for placement in infected fields (Table 3). 
Vicryl (Ethicon, USA) and Dexon (American Cyanamid Co, USA), for 
example, are used in open abdominal wounds. The drawback to these 
meshes, however, is that they degrade within one to three months and 
are associated with high recurrence rates (23-27). To overcome early 
degradation, newer synthetic biomaterial meshes have been developed. 
For example, Gore Bio-A (WL Gore and Associates, USA) mesh 
degrades in six months and has been shown to reduce recurrence rates, 
infection and pain (23,28,29). Phasix (Bard Davol Inc, USA) (23,30) 
and Tigr Matrix (Novus Scientific, USA) (31-33) also degrade over 
several months and are useful in hernia repair, as has been demonstrated 
in preclinical animal (23,31,32) and human pilot (33) studies. The 
long-term effectiveness of these newer synthetic degradable meshes 
remains to be tested in clinical practice. 

Biological meshes were used for hernia repair because they were 
believed to promote regeneration, rather than scarring, and because 
they could also be used in contaminated or infected fields (34). 
Biological meshes are typically manufactured from decellularized 
human, porcine or bovine dermis; bovine or equine pericardium; or 
porcine intestinal submucosa (Table 4) (35). The most commonly used 
biological meshes include Alloderm (LifeCell, USA) (allogenic dermis 
collagen), Permacol (Medtronic, USA) (cross-linked porcine dermis 
collagen), Strattice (LifeCell, USA) (non-cross-linked porcine dermis 
collagen), and Surgisis (Cook Biodesign, USA) (porcine intestine col-
lagen). Alloderm is more expensive (36) and, in general, human der-
mal meshes have a higher recurrence rate than xenogenics (37). The 
porcine dermis collagens have a slightly better side effect profile than 
Alloderm and Surgisis, demonstrated by lower rates of seroma forma-
tion, lower total surgical morbidity (38), lower failure rates, and longer 

Figure 1)	Vectors of force in the abdominal wall. Contraction of the rectus muscles (A) does not promote hernia formation. Contraction of the external oblique 
muscles (B), internal oblique muscles (C), and transversus abdominis muscles (D) pull the rectus muscles apart and promote hernia formation. A cross sec-
tional view (E) demonstrates the forces acting on the linea alba in response to increased intra-abdominal pressure (eg, coughing). Forces in the transverse direc-
tion are reportedly twice as much as the forces in the longitudinal direction (F) (134)
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time to failure in contaminated or infected fields (39). Porcine materi-
als are easier to manufacture than allomatrices: they can be harvested 
in larger and more consistent sheets, and harvesting conditions can be 
better controlled. Porcine acellular dermal matrices do have drawbacks, 
however, such as requiring modifications to curb the intense immune 
response (40). Modifications can be achieved through chemical cross-
linking of collagen fibres, as well as enzymatic removal of antigenic 
groups in the collagen (which enables the use of non-cross-linked por-
cine materials)(40). Interestingly, cross-linked porcine dermis meshes 
are associated with a heightened foreign body reaction and pronounced 
early inflammatory response (41,42), while non-cross-linked porcine 
meshes demonstrate fewer adhesions and complications (40). Although 
biological meshes are routinely used in infected fields, their high costs 
remain a barrier to widespread use (43). In addition, there is insuffi-
cient evidence in the literature regarding the advantages of biologic 
meshes over synthetic meshes in hernia repair (44-46). 

Composite meshes consist of two or more distinct components 
and were developed to improve the side effect profiles of meshes. 
Many composite meshes are ‘biface implants’ – meshes with a porous 
external surface to encourage tissue integration and a smooth micro-
porous internal surface to prevent adhesions when placed in contact 
with viscera. The external surface generally consists of a nondegrad-
able synthetic material, while the visceral surface can be any com-
bination of degradable or nondegradable, synthetic or biological 
materials, such as polyglactin, collagen, polyglecaprone, cellulose, 
titanium, omega-3, monocryl, polyvinylidene fluoride and hyaluron-
ate (47,48). Another group of composite meshes are not biface, but 
rather consist of a nondegradable synthetic mesh with a temporary 
barrier coating (48). Temporary barrier coated meshes have a barrier 
coating that is degradable and consists of a material that discourages 
adhesion formation, usually hydrophilic coatings such as collagen. 

Thus, they theoretically promote integration and prevent adhesion 
formation during the initial period of implantation and then become 
a regular synthetic nondegradable mesh after the coating degrades. 
Examples of composite mesh currently on the market include Vypro 
(Ethicon, USA) , Parietex composite (Medtronic, USA), Composix 
(Bard Davol Inc, USA), Proceed (Ethicon, USA), Dynamesh (FEG 
Textiltechnik, Germany), Sepramesh (Bard Davol Inc, USA), 
Ventralight ST (Bard Davol Inc, USA), Ultrapro (Ethicon, USA), 
Ti-mesh (Medtronic, USA) and C-Qur (Atrium Medical, USA). 

Tissue Engineering Principles of Mesh Design
The principles of functional tissue engineering (49) were originally 
developed to serve as a guide for designing implants that replace or 
repair body structures with important biomechanical functions. These 
principles include measuring the mechanical properties of normal tissue, 
prioritizing and selecting the most important physical properties of the 
tissue as they relate to the pathophysiology of disease, and engineering 
materials to overcome the current hurdles and complications. The fol-
lowing discussion presents some of the most important properties con-
sidered in hernia mesh design and manufacturing (Table 5). 

One useful concept to consider through the following discussion is 
the difference between ‘knit’ and ‘woven’. With knitting, a continuous 
filament is looped around another; while in weaving, a series of paral-
lel strands are alternately passed over and under another set of parallel 
strands (Figure 2). Knit fabrics are more porous and flexible, while 
woven fabrics usually exhibit the same mechanical properties in each 
axis. Synthetic meshes (with the exception of the foils, such as ePTFE) 
are generally knitted, not woven (50).

Table 1
Classes of mesh with their relative advantages and 
disadvantages
Class of mesh Advantage(s) Disadvantage(s)
Synthetic 

Non-degradable Inexpensive Not recommended for 
infected fields

Low recurrence rates Higher rates of infection, 
discomfort, and adhesions

Degradable Better side-effect profile 
than non-degradables

High recurrence rates for 
older meshes

Lower cost than biologicals Insufficient evidence for 
newer meshes

Biological
Degradable Can be used in complex/

infected fields
High recurrence rates

Expensive

Table 2
The materials used in synthetic nondegradable mesh
Material Mesh Characteristics
Polypropylene Prolene Rigid, inert, used in most 

woven prosthesesMarlex
Parietene*
Surgipro* 

Polyethylene terephthalate  
polyester

Dacron Elastic, hydrophilic, also 
available as large-pore 
woven mesh

Mersilene†

Expanded polytetrafluoroethylene 
(ePTFE)

Gore-Tex‡ Rigid, hydrophobic, low 
integration decreases 
risk of adhesions

Teflon

*Covidien-Medtronic USA; †Ethicon, USA; ‡WL Gore and Associates Inc, USA

Table 3
Synthetic degradable meshes(23)
Material Mesh Degradation time
Polyglactin Vicryl* 1–3 months
Polyglycolic acid Dexon† 1–3 months
Polyglycolic acid/trimethylene  

carbonate
Gore Bio-A‡ 6 months

Poly-4-hydroxybutyrate Phasix§ 12–18 months
Polyglycolide/polylactide/ 

trimethylene carbonate
Tigr Matrix¶ Includes two different 

fibre compositions;  
partially degrades in  
4 months, completely 
degrades after 3 years

*Ethicon Inc, USA; †American Cyanamid Co, USA; ‡WL Gore and Associates 
Inc, USA; §Bard Davol Inc, USA; ¶Novus Scientific, USA

Table 4
Biological mesh materials
Mesh Examples
Allogenic

Human dermis Alloderm (LifeCell, USA)
Allomax (Bard Davol Inc, USA)
FlexHD (Ethicon, USA)

Xenogenic
Porcine dermis Permacol (Medtronic, USA)

Collamend (Bard Davol Inc, USA)
Strattice (LifeCell, USA)
XenMatriX (Bard Davol Inc, USA)

Porcine intestine Surgisis (Cook Biodesign, USA)
Fortagen (Organogenesis Inc, USA)

Bovine dermis SurgiMend (TEI Biosciences, USA)
Bovine pericardium Veritas (Synovis Surgical Innovations, USA)

Tutopas (Mentor Corp, USA) 
Periguard (Synovis Surgical Innovations, USA)
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Biocompatibility
The biocompatibility of mesh is dependent on a multitude of variables 
and is quantified in terms of the degree by which the material induces 
a foreign body reaction. Quantification includes measurement of the 
number of inflammatory cells (macrophages and granulocytes) present 
in the vicinity, granuloma size, vascularization, collagen deposition 
and mesh migration (51). Essentially all materials used in mesh 
development are chemically and physically inert, nonimmunogenic 
and non-toxic, yet none are biologically inert and all, including the 
biological meshes (52), trigger an array of adverse events, including 
a foreign body reaction (53). The predominant hypothesis for the 
foreign body reaction in inert nonimmunogenic materials is the pro-
tein absorption theory, in which proteins nonspecifically adhere to 
the material surface and subsequently lose patterns in their tertiary 
structure, revealing hidden binding domains that elicit an immune 

response (54). The proteins that adhere to the foreign body depend 
on the material and frequently include immunoglobulins, C3, fib-
rinogen and factor XII. It has been proposed that the difference 
in adsorption determines the differences in foreign body reactions. 
Subsequently, immune cells are recruited and giant cells form and 
establish granulomas around the foreign material. Ultimately, a 
fibrotic capsule forms around the foreign material (55,56). Of the 
materials commonly used as mesh, polypropylene may elicit the 
strongest foreign-body reaction (56). Additionally, multifilament-
ous polypropylene mesh may promote added fibrosis compared with 
monofilamentous polypropylene (57). 

Mechanical properties 
Tensile strength is probably the most commonly discussed mechanical 
property of mesh. Tensile strength is defined as the maximum force per 
cross sectional area that the material can withstand before failure or 
break (47). Force per cross sectional area is known as ‘stress’ and is 
measured in units of pressure, Pa or N/cm2 (58). Because meshes are 
produced with a standard thickness, sometimes tensile strength is pre-
sented as N/cm width of mesh, omitting the value of the thickness, 
which is presumed a fixed amount. Obviously, the ultimate tensile 
strength needs to be adequate to withstand the amount of force that is 
exerted on the abdominal wall. Most commercially available meshes 
exceed the required tensile strength to withstand the physiological 
forces of the abdominal wall (59). Nonetheless, mechanical failure of 
synthetic permanent mesh has been reported in the literature and 
appears to be exclusive to lightweight meshes (60-63).

Elasticity, compliance and stiffness are terms that are frequently 
confused or inaccurately used interchangeably. Elasticity is defined as 
the tendency of a material to return to its original shape after being 
deformed and is measured by the elastic modulus. The elastic modulus is 
derived from the slope of the stress-strain curve and, depending on its 
application, can be measured on the initial part of the curve or the part 
that has the greatest functional importance. Elasticity is also expressed 

Table 5
Important properties of mesh
Property Definition Goals/recommendations (reference[s])
Biocompatibility Capacity to be implanted without producing an adverse effect Non-toxic material with lowest amount of immune reaction (all materials 

produce some degree of reaction)
Mechanical properties 
Tensile strength Maximum stress that a material can withstand while being 

stretched before failing or breaking
At least 32N/cm in the strongest direction, at least 16N/cm in the 

weakest (59)
Stiffness (Figure 3A) The extent to which a material resists deformation in 

response to force
Goals stated as measures of elasticity (currently no standardized 

range of values).
Elasticity (Figure 3B) The tendency to return to original shape after being 

deformed; measured by the elastic modulus, the tendency 
to be non-permanently deformed in response to a force

At most 30% at 32N/cm (47)

Compliance (Figure 3C) The amount of displacement or deformation in response to 
a unit force

Goals stated as measures of elasticity (currently no standardized 
range of values) 

Porosity and weight 
Porosity The percentage of mesh not occupied by mesh material (Currently no standardized range of values).
Pore size (Figure 3D) The area between mesh filaments Pores >75 µm allow macrophage infiltration, neovascularization and 

incorporation (74); pores >1 mm prevent granuloma bridging for  
polypropylene mesh (75,76)

Effective pores (Figure 3E) The circular area between mesh filaments not occupied by 
granulomatous tissue

Circular interfilament distance of 1 mm for polypropylene mesh (70)

Weight Measure of mass per unit of area (Currently no standardized range of values)
Degradation Disappearance of the mesh material 6 months for scar tissue to reach its maximum strength; (23,88,135) 

for adhesion formation the timeframe is unclear (128)
Constitution The structural form of the mesh, including monofilament, 

multifilament, or foil structures
Monofilament mesh is preferable to multifilament mesh, due to a better 

side effect profile regarding foreign body reaction and infection
Anisotropy (Figure 3F) The degree to which mechanical properties differ in response 

to applied loads in various directions; measured by the ratio 
between the elastic moduli in each axis for a given mesh

If mesh is anisotropic, its directionality must be acknowledged to 
address the forces it is subject to (currently no standardized range 
of values)

Figure 2)	 Differences between woven and knitted fabrics. Woven fabrics 
consist of a series of parallel strands alternately passed over and under another 
set of parallel strands. Knit fabrics, such as the polypropylene mesh shown, 
consists of continuous filaments that are looped around one another
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as the amount of displacement in response to a specific measure of 
stress. It is an important property because meshes that are stretched 
out but do not return to their original size, will likely lead to recurrent 
hernias. The natural elasticity of the abdominal wall has been esti-
mated to be approximately 38% at 32N/cm, and an elasticity >30% at 
32N/cm may allow for more stretching than the normal abdominal 
wall would permit and, therefore, may not be suitable for a functional 
repair (47). On the other hand, a mesh with low elasticity would 
restrict abdominal wall distention, resulting in pain and mesh failure. 
It has been suggested that the lowest range for mesh elasticity is 
between 4% and 15% at 16N/cm (64). 

Stiffness is defined as the extent to which an object resists 
deformation in response to an applied force and is the inverse of com-
pliance. Overly stiff materials are more likely to dehisce from the 
abdominal wall and cause pain when the patient moves. Some have 
described mesh stiffness as the quotient of the maximum load and 
strain at the maximum load, but stiffness and compliance are not com-
mon measurements (59). 

Pore size and weight
Pore size and weight are key aspects of mesh design, particularly with 
the more recently developed large-pore lightweight mesh (65-68). 
Pores <10 mm generally impede human cellular penetration and tissue 
ingrowth (69). Pore sizes ≤75 mm may hinder the access of antimicrobial 

agents and host immune cells to bacteria, thus, predisposing the 
material to bacterial colonization and infection. Such meshes are some-
times referred to as microporous meshes, as opposed to macroporous 
meshes with pore sizes >75 mm (70). The ePTFE foils (eg, Dualmesh 
[WL Gore and Associates, USA]) are the only microporous synthetic 
meshes and as such, frequently require removal when infected (71-73). 
As the pore size increases to 100 µm to 300 µm, neovascularization 
and tissue integration are frequently observed, but granuloma bridg-
ing becomes a concern (56). Granuloma bridging, or the coalescence 
of the foreign body response around mesh fibres, can clog the pores 
and prevent further tissue integration (Figure 4) (56). In polypropyl-
ene meshes, when pore sizes are <1 mm, granulomas can become 
confluent, encapsulate the mesh and create a stiff plate with reduced 
flexibility (70,74-76). 

Although it was previously believed that large pore size would 
delay incorporation (77), this has not been observed in practice. In 
fact, the opposite has been described, in which large-pore meshes 
(with lower surface-area-to-volume ratios) result in a milder foreign-
body reaction. The trade-off, however, is that reduced mesh material 
results in a base mesh with reduced strength.

Weight is another factor in mesh design. Mesh weight is partially 
dependent on polymer weight (74) but is mainly a function of pore size 
(75). With greater pore sizes, less material is used to construct the 
mesh, and mesh weight is reduced. In general, lightweight meshes tend 

Figure 3) A to C The difference between stiffness, elasticity and compliance. A stiff object (A) does not easily undergo deformation by force. An elastic object 
(B) will return to its original form when tension is released, up to the point where it undergoes plastic deformation. This point is considered to be the ultimate 
tensile strength of the object as opposed to the point of complete tearing. A compliant object that is not elastic (C) will deform readily and will not return to its 
original length. D and E Pores and effective pores. Pore size refers to the area between mesh fibres. Effective pores refer to pores that do not become occupied 
with granuloma tissue. This is frequently measured by pores that can fit spheres of a specific diameter (eg, 1 mm for polypropylene). F Anisotropy. This figure 
shows a polypropylene mesh when subject to force pulling in two perpendicular directions. When pulled in one direction, the mesh demonstrates minimal displace-
ment, but when subject to force in the other axis, the displacement is evident
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to weigh approximately 33 g/m2, while heavyweight meshes tend to 
weigh approximately 100 g/m2 (47,74). The rationale for regarding 
weight as an independent variable from pore size is the hypothesis that 
lighter weight meshes will have a smaller foreign body burden (78) and 
a smaller biomaterial surface area (79) and, thus, should elicit a less 
intense foreign body reaction. Some studies confirm this effect in prac-
tice and claim that lower weight results in fewer complications, while 
others do not (63,80). Specific recommendations regarding the ideal 
mesh weight remain to be determined. In addition, while some have 
attempted to classify mesh based on weight, such attempts and their cut-
off points have not been completely supported by the evidence (70). 

In practice, large-pore lightweight meshes are reported to have a 
similar profile to small-pore heavyweight meshes (81,82). At least one 
study demonstrated higher rates of shrinkage for large-pore lightweight 
mesh compared with small-pore heavyweight meshes (83). Some stud-
ies have suggested that large-pore lightweight meshes result in superior 
tissue integration (84), better elasticity (85) and a lower incidence of 
pain (86), while other studies report a higher recurrence rate for large-
pore lightweight mesh in laparoscopically repaired groin hernias, 
especially in larger hernias (87). 

Degradation
Degradation, defined as the disappearance of mesh or gradual decline 
in its mass, can be desirable or undesirable. In meshes that are 
degradable, the goal is to have the mesh last until scar or regenera-
tive tissue replaces it and matures to maximum strength. From early 
experiences with Vicryl and Dexon, it is known that a three-month 
time frame for degradation would be inadequate (23-25). Recent 
data suggest a degradation time of six months could be successful, as 
evidenced by the studies that have demonstrated adequate outcomes 
with the Gore Bio-A mesh (23,28,29). This is analogous to studies in 
skin wound healing, which suggest that wounds regain 80% of their 
original strength by six months (88). However, the long-term recur-
rence rate of the Gore Bio-A mesh remains high, ranging from 13% 
to 37.5%, and it has been suggested that 12 months may be a better 
time frame for mesh degradation to ensure maturation of the scar 
tissue (28,29,89,90). This is where newer synthetic degradable 
meshes that have even slower degradation rates, such as Phasix and 
Tigr Matrix, could play a role. 

In spanning defects that require the mesh to remain indefinitely to 
provide structural support, degradable mesh is contraindicated because 
the recurrence rate is nearly 100% (91). Unfortunately, even non-
degradable mesh may slowly degrade. Polyester meshes are known to 
have the drawback of long-term degradation, which renders them 
unsuitable for long-term support (92). Recently, attention has even 
been drawn to the degradation of polypropylene, one of the most 
widely used materials in mesh development (93). It has been suggested 
that the degradation of polypropylene is accelerated with exposure of 
the material to heat during the manufacturing process (94). Early deg-
radation of a mesh that is not intended to degrade may contribute to 
mechanical failure and hernia recurrence.

Another discussion regarding mesh degradation includes under-
standing what replaces the mesh once it has degraded: scar or regener-
ated tissue. For example, cross-linked porcine meshes are more 
antigenic and, are thus, replaced by scar, whereas non-cross-linked 
meshes are less antigenic and are replaced by regenerate tissue. 
Regenerate tissue exhibits a greater degree of cellular infiltration, deg-
radation, deposition of extracellular matrix, neovascularization, lower 
inflammatory cell response, and less scar encapsulation, whereas scar 
tissue has limited host cell and vessel infiltration, more fibrotic matrix, 
and aligned collagen deposition (40,95).

Constitution
Synthetic mesh can be monofilament (mesh fibres are single fila-
ments) or multifilament (mesh fibres consist of multiple filaments). 
Examples of multifilament meshes include Mersilene (a synthetic non-
degradable multifilament mesh), Vicryl (a degradable multifilament 
mesh), and Vypro and Parietex (composite multifilament meshes) 
(74). Multifilament meshes are more pliable than monofilament 
meshes (96). Although some maintain that multifilament and mono-
filament mesh are comparable in terms of infection risks (97), the 
evidence suggests that multifilament meshes have higher infection 
rates and stronger foreign body reactions, due to the inaccessible crev-
ices between the filaments, and larger surface areas (98-100).

Anisotropy
Anisotropy is the degree to which mechanical properties differ in 
response to applied loads in various directions and is quantified by the 
ratio between the elastic moduli in each axis for a given mesh (101). 
Almost all synthetic meshes exhibit various degrees of anisotropy. This 
is the result of synthetic mesh being a knit material as opposed to a 
woven fabric. 

Because mechanical properties differ greatly based on directional-
ity in knitted mesh, it has been recommended that anisotropy be 
identified and marked on the meshes to help surgeons orient meshes 
during implantation to optimize postsurgical outcomes (59,101,102). 
The rationale that the meshes should be aligned to maximally resist 
forces has yet to be tested or verified (101). 

Complications
Hernia recurrence/infection 
The most common complication following use of a surgical mesh is 
hernia recurrence (10,103-105). Fundamentally, recurrence is caused 
by early degradation of the mesh, early removal of the mesh (as neces-
sary following infections) or mesh failure (Figure 5) (34,45,106). Mesh 
failure is caused by central mesh failure (mesh fracture) (60-63) or 
fixation/suture line failure (107). Central mesh failure almost always 
occurs in lightweight but not heavyweight meshes (60-63). Suture line 
failure is common and is typically reported as surgeon inexperience or 
fixation technique dependent. This is why so much effort is being 
made to find superior fixation techniques (108-111).

The rate of infection for open ventral incisional hernia repair is 
reported to be 6% to 10% (73). Patient- and procedure-related risk 
factors include obesity, chronic obstructive pulmonary disease, abdom-
inal aortic aneurysm repair, previous surgical site infection, perform-
ance of other procedures via the same incision at the time of repair, 

Figure 4) Granuloma bridging. When pores are small, granulomas become 
confluent, leaving no remaining effective pores. In large-pore meshes, 
granulomas surround the mesh fibres but do not occupy the entire pore
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longer operative time, lack of tissue coverage of the mesh, enterotomy 
and enterocutaneous fistula (73). Mesh-related risk factors include the 
use of larger mesh sheets, microporous meshes or ePTFE mesh (73). 
Biological prostheses are commonly used in complex, contaminated, 
or potentially contaminated fields, but the exact reason why these 
biomaterials are safer to use is unclear (112). Controversy exists as to 
whether synthetic nondegradable meshes are also safe to use in an 
infected field (112-114). The concern is that once the infection is 
seeded on the nondegradable mesh, the infection will not resolve and 
an additional operation will be needed to remove the mesh. Some 
authors believe that there is a place for nondegradable meshes in 
infected fields, particularly because of the high costs of biologic meshes 
(115-117). Synthetic degradable meshes, however, have shown prom-
ise as a potential alternative to the biologicals for use in complex or 
infected fields (118).

One newly emerging concept is that of drug-eluting meshes, which 
allow for local delivery of antibiotics (119). Several studies have 
described methods wherein the prosthesis is coated with antibiotic 
containing solution; however, this may also alter its porosity, surface 
morphology and biomechanics (119-123). Antibiotic-eluting meshes 
could decrease bacterial contamination and biofilm formation. In 
addition, local drug delivery systems offer greater efficacy, prolonged 
drug activity, lower drug dose requirements, lower probabilities of anti-
microbial resistance and generally lower toxicity (124,125). 

Adhesion 
For bridging meshes or when meshes are placed within the abdomen, 
viscera-mesh adhesion is a concern (Figure 6). Several studies have 
shown that biface (126) and barrier-coated (127) composite meshes 
are effective at reducing adhesion formation. A potential problem with 

temporary barrier coated meshes is that there is no specific timeline 
for adhesion formation (128); they can occur any time after mesh 
implantation. Stable hydrophilic coatings that do not degrade 
have been applied to address this issue, but this solution is still in 
its early stages and only limited animal model data exist (129). In 
general, ePTFE meshes have relatively low adhesion rates (130). 
Lightweight meshes have also been reported to exhibit low adhesion 
rates, which is presumably due to better integration and less foreign 
body reaction (131).

Postoperative pain
Postoperative pain is also a common complication of incisional hernia 
repair (132). While acute and early postoperative pain may be related 
to the type of mesh used, it is equally likely attributable to nerve dam-
age from the operation (74). On the other hand, late-onset chronic 
postoperative pain is generally considered to be a complication of the 
mesh itself, and is most commonly associated with foreign body reac-
tion and the resulting stiffness and shrinkage. In light of these data, 
some hypothesize that lightweight mesh or fully degradable mesh may 
decrease the risk for chronic pain (133).

Conclusion
The tissue engineering principle of ‘replacing like with like’ should be 
applied in abdominal wall reconstruction; however, abdominal wall 
properties are difficult to replicate due to its complex anatomy and 
dynamic requirements. In an effort to reduce ventral incisional hernia 
recurrence and the overwhelming associated costs, every effort should 
be made to choose the most appropriate mesh, as in certain settings, 
one type of mesh may be favoured over another. Manufacturers of 
mesh aim to improve their product by altering the properties described 
in the present article with each new product. Unfortunately, there is 
currently no ideal mesh, and surgeons must choose the ‘best’ available 
mesh given a clinical scenario. The present article presents the basic 
principles of mesh design to provide mesh users information on the 
many different types of meshes available, the properties of mesh and 
the critical issues facing the field of hernia repair.
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Figure 6)	Mesh adhesion

Figure 5)	Mesh failure in a patient with tack fixation. The mesh is seen up 
to the point shown by the white arrows. The black arrows show tacks with-
out any surrounding mesh
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